skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yamamoto, Naoki"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Motivated by the great success of classical generative models in machine learning, enthusiastic exploration of their quantum version has recently started. To depart on this journey, it is important to develop a relevant metric to evaluate the quality of quantum generative models; in the classical case, one such example is the (classical) inception score (cIS). In this paper, as a natural extension of cIS, we propose the quantum inception score (qIS) for quantum generators. Importantly, qIS relates the quality to the Holevo information of the quantum channel that classifies a given dataset. In this context, we show several properties of qIS. First, qIS is greater than or equal to the corresponding cIS, which is defined through projection measurements on the system output. Second, the difference between qIS and cIS arises from the presence of quantum coherence, as characterized by the resource theory of asymmetry. Third, when a set of entangled generators is prepared, there exists a classifying process leading to the further enhancement of qIS. Fourth, we harness the quantum fluctuation theorem to characterize the physical limitation of qIS. Finally, we apply qIS to assess the quality of the one-dimensional spin chain model as a quantum generative model, with the quantum convolutional neural network as a quantum classifier, for the phase classification problem in the quantum many-body physics. Published by the American Physical Society2024 
    more » « less